Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Thromb Haemost ; 21(4): 1043-1054, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2306562

RESUMEN

Fibrinolysis is a series of enzymatic reactions that degrade insoluble fibrin. Plasminogen activators convert the zymogen plasminogen to the active serine protease plasmin, which cleaves and solubilizes crosslinked fibrin clots into fibrin degradation products. The quantity and quality of fibrinolytic enzymes, their respective inhibitors, and clot structure determine overall fibrinolysis. The quantity of protein can be measured by antigen-based assays, and both quantity and quality can be assessed using functional assays. Furthermore, variations of commonly used assays have been reported, which are tailored to address the role(s) of specific fibrinolytic factors and cellular elements (eg, platelets, neutrophils, and red blood cells). Although the concentration and/or activity of a protein can be quantified, how these individual components contribute to the overall fibrinolysis outcome can be challenging to determine. This difficulty is due to temporal changes within and around the thrombi during the clot breakdown, particularly the fibrin matrix structure, and composition. Furthermore, terms such as "fibrinolytic activity/potential," "plasminogen activation," and "plasmin activity" are often used interchangeably despite having different definitions. The purpose of this review is to 1) summarize the assays measuring fibrinolysis activity and potential, 2) facilitate the interpretation of data generated by these assays, and 3) summarize the strengths and limitations of these assays.


Asunto(s)
Fibrinólisis , Trombosis , Humanos , Fibrinólisis/fisiología , Fibrinolisina/metabolismo , Plasminógeno/metabolismo , Fibrina/metabolismo , Serina Proteasas , Comunicación
2.
Acta Biomed ; 94(1): e2023030, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2241943

RESUMEN

BACKGROUND AND AIM: Angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 and serine 11A proteases (TMPRSS2, TMPRSS11A), and a cell surface cluster of differentiation 147 (CD147) might be a gene candidate that exerts the susceptibility to and mortality from coronavirus disease 19 (COVID-19). The aim of this study was to investigate the associations between ace2, tmprss2, tmprss11a, and cd147 polymorphic variants and the severity of COVID-19 in the Ukrainian population. METHODS: The study population consisted of the Ukrainian population with COVID-19: patients without oxygen therapy (n=62), with non-invasive (n=92) and invasive (n=35) oxygen therapy, as well as control subjects (n=92). Allelic polymorphisms of ace2 rs4240157, tmprss2 rs12329760, and tmprss11a rs353163 were determined by real-time PCR, and cd147 rs8259 polymorphism was detected by PCR with subsequent restrictase analysis. We compared investigated polymorphisms distribution with other populations by meta-analysis. RESULTS: Our study is the first to obtain data about the distribution of investigated gene polymorphisms in the Ukrainian population: tmprss2 rs12329760 - CC 60.9%, CT 35.9%, TT 3.2%; tmprss11a rs353163 - CC 46.7%, CT 40.2%, TT 13.1%; ace2 rs4240157 - CC 7.6%, C 18.5%, CT 22.8%, TT 19.6%, T 31.5%; cd147 rs8259 - TT 60.9%, AT 32.6%, AA 6.5%. This distribution was similar to the Northern, Western and Southern European populations. There was a statistically significant difference in the frequency of tmprss2 polymorphic genotypes CC 57.1%, CT 28.6%, and TT 14.3% (P<0.05) in COVID-19 patients with invasive oxygen therapy in comparison with non-invasive oxygen therapy. This tmprss2 mutation occurs in the scavenger receptor cysteine-rich (SRCR) domain and might be important for protein-protein interaction in a calcium-dependent manner. CONCLUSIONS: Our study indicated the presence of an association between the tmprss2 rs12329760 polymorphism and the severity of COVID-19 in the Ukrainian population.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Enzima Convertidora de Angiotensina 2/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Polimorfismo Genético , Serina/genética , Oxígeno , Proteínas de la Membrana/genética , Serina Proteasas/genética , Serina Endopeptidasas/genética
3.
Lancet Respir Med ; 10(12): 1119-1128, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2211777

RESUMEN

BACKGROUND: Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. METHODS: In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≥65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. FINDINGS: Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57-0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. INTERPRETATION: Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19. FUNDING: Sponsored by the University of Dundee and supported through an Investigator Initiated Research award from Insmed, Bridgewater, NJ; STOP-COVID19 trial.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , Resultado del Tratamiento , Método Doble Ciego , Serina Proteasas , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas
4.
Front Cell Infect Microbiol ; 12: 963239, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2121359

RESUMEN

Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable morbidity and mortality worldwide. The clinical manifestation of COVID-19 ranges from asymptomatic or mild infection to severe or critical illness, such as respiratory failure, multi-organ dysfunction or even death. Large-scale genetic association studies have indicated that genetic variations affecting SARS-CoV-2 receptors (angiotensin-converting enzymes, transmembrane serine protease-2) and immune components (Interferons, Interleukins, Toll-like receptors and Human leukocyte antigen) are critical host determinants related to the severity of COVID-19. Genetic background, such as 3p21.31 and 9q34.2 loci were also identified to influence outcomes of COVID-19. In this review, we aimed to summarize the current literature focusing on human genetic factors that may contribute to the observed diversified severity of COVID-19. Enhanced understanding of host genetic factors and viral interactions of SARS-CoV-2 could provide scientific bases for personalized preventive measures and precision medicine strategies.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Angiotensinas , COVID-19/genética , Enfermedad Crítica , Antígenos HLA , Genética Humana , Humanos , Interferones , SARS-CoV-2/genética , Serina Proteasas , Receptores Toll-Like
5.
Viruses ; 14(10)2022 09 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2099840

RESUMEN

SARS-CoV-2 cell-cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell-cell fusion assays. We also show that metalloproteases promote S2'-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Serina Endopeptidasas/metabolismo , Metaloproteasas , Serina Proteasas
6.
Arch Virol ; 167(10): 1931-1946, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-2059867

RESUMEN

Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.


Asunto(s)
Anosmia , COVID-19 , Serina Endopeptidasas , Anosmia/virología , COVID-19/complicaciones , Humanos , Pandemias , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Proteasas , Internalización del Virus
7.
Life Sci ; 308: 120981, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2042005

RESUMEN

The emergence of beta-coronavirus SARS-CoV-2 gets entry into its host cells by recognizing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRESS2) receptors, which are responsible for coronavirus diseases-2019 (COVID-19). Global communities have been affected by COVID-19, especially caused the neurological complications and other critical medical issues. COVID-19 associated complications appear in aged people with underlying neurological states, especially in Parkinson's disease (PD) and Alzheimer's disease (AD). ACE2 receptors abundantly expressed in dopamine neurons may worsen the motor symptoms in PD and upregulates in SARS-CoV-2 infected aged patients' brain with AD. Immune-mediated cytokines released in SARS-CoV-2 infection lead to an indirect immune response that damages the central nervous system. Extreme cytokines release (cytokine storm) occurs due to aberrant immune pathways, and activation in microglial propagates CNS damage in COVID-19 patients. Here, we have explored the pathophysiology, immune responses, and long-term neurological impact on PD and AD patients with COVID-19. It is also a crucial step to understanding COVID-19 pathogenesis to reduce fatal outcomes of neurodegenerative diseases.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Anciano , Enzima Convertidora de Angiotensina 2 , COVID-19/complicaciones , Citocinas , Humanos , Inmunidad , Enfermedades del Sistema Nervioso/etiología , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Serina Proteasas
8.
J Biol Chem ; 298(11): 102511, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2031421

RESUMEN

Revealing the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and cell-to-cell spread might provide insights for understanding the underlying mechanisms of viral pathogenesis, tropism, and virulence. The signaling pathways involved in SARS-CoV-2 entry and viral spike-mediated cell-to-cell fusion remain elusive. In the current study, we found that macropinocytosis inhibitors significantly suppressed SARS-CoV-2 infection at both the entry and viral spike-mediated cell-to-cell fusion steps. We demonstrated that SARS-CoV-2 entry required the small GTPase Rac1 and its effector kinase p21-activated kinase 1 by dominant-negative and RNAi assays in human embryonic kidney 293T-angiotensin-converting enzyme 2 cells and that the serine protease transmembrane serine protease 2 reversed the decrease in SARS-CoV-2 entry caused by the macropinocytosis inhibitors. Moreover, in the cell-to-cell fusion assay, we confirmed that macropinocytosis inhibitors significantly decreased viral spike-mediated cell-to-cell fusion. Overall, we provided evidence that SARS-CoV-2 utilizes a macropinocytosis pathway to enter target cells and to efficiently promote viral spike-mediated cell-to-cell fusion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Fusión Celular , Internalización del Virus , Serina Proteasas
9.
FASEB J ; 36(9): e22494, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1997082

RESUMEN

In a rat middle cerebral artery occlusion (MACo) model of ischemic stroke, intracerebroventricular administration of human recombinant hepatocyte growth factor (HGF) mitigated motor impairment and cortical infarction. Recombinant HGF reduced MCAo-induced TNFα and IL1ß expression, and alleviated perilesional reactivation of microglia and astrocyte. All of the aforementioned beneficial effects of HGF were antagonized by an inhibitor to the type II transmembrane serine protease matriptase (MTP). MCAo upregulated MTP mRNA and protein in the lesioned cortex. MTP protein, not the mRNA, was increased further by recombinant HGF but reduced when MTP inhibitor (MTPi) was added to the treatment. Changes of the endogenous active HGF by MCAo, HGF or MTPi paralleled with the changes of MTP protein under the same conditions whilst neither HGF mRNA nor the total endogenous HGF protein were altered. These data showed that the therapeutic effects of HGF in stroke brain is attributed to its proteolytic activation and that MTP is a main protease of the event. MCAo enhanced MTP mRNA and thus protein expression; the initial use of the recombinant active HGF stabilized MCAo-induced MTP protein and subsequent activation of endogenous latent HGF which in turn stabilized further MTP protein. A reciprocal regulation between MTP and HGF appears to be present where MTP promotes HGF activation and the active HGF prevents MTP protein turnover. This study, for the first time, shows that MTP can participate in neural protection in stroke brain through activation of HGF. The cycles of HGF-MTP regulation achieved preservation of the neurological activity.


Asunto(s)
Factor de Crecimiento de Hepatocito , Accidente Cerebrovascular , Animales , Encéfalo/metabolismo , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Neuroprotección , ARN Mensajero/metabolismo , Ratas , Serina Endopeptidasas , Serina Proteasas/metabolismo , Accidente Cerebrovascular/metabolismo
10.
Infect Dis (Lond) ; 54(12): 846-851, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1984985

RESUMEN

INTRODUCTION: Alpha 1 antitrypsin (A1AT) is the major human blood serine protease inhibitor. Transmembrane serine protease 2 (TMPRSS2), which is crucial for SARS-CoV-2 cell entry, is inhibited by A1AT. Therefore, we hypothesized that individuals with diminished levels of A1AT may be more prone to SARS-CoV-2 infection and severe COVID-19 disease. Our aim in this study was to evaluate the level of A1AT in hospitalized COVID-19 patients in comparison to hospitalized patients with non-COVID-19 pneumonia. METHODS: We conducted an observational prospective study between October 2020 and April 2021 in Rabin Medical Centre in Israel. A1AT levels were measured from the routine serum samples of hospitalized patients with COVID-19 and non-COVID-19 pneumonia (control group). The primary outcome was A1AT level, secondary outcomes were clinical outcomes and predictors of morality. RESULTS: Overall, 145 patients were included in the study, 98 in the COVID-19 group and 47 in the control group. The median A1AT level was 222 mg/dL (interquartile range (IQR) 188-269) and 258 mg/dL (IQR 210-281) in the COVID-19 and control groups, respectively (p = .045). Multivariate analysis for independent risk factors for mortality among COVID-19 patients showed that diabetes mellitus (p = .02), older age (p = .04), and high A1AT levels (p = .04) were all associated with increased mortality. CONCLUSION: Patients admitted due to severe COVID-19 had lower A1AT levels in comparison to patients admitted due to non-COVID pneumonia. This observation may suggest an association between mildly diminished A1AT and higher risk of SARS-CoV-2 infection with severe COVID-19 disease.


Asunto(s)
COVID-19 , Neumonía , Deficiencia de alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina , SARS-CoV-2 , Estudios Prospectivos , Inhibidores de Serina Proteinasa , Serina Proteasas
11.
Biomolecules ; 12(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1938685

RESUMEN

Protease inhibitors are widely studied since the unrestricted activity of proteases can cause extensive organ lesions. In particular, elastase activity is involved in the pathophysiology of acute lung injury, for example during SARS-CoV-2 infection, while serine proteases and thrombin-like proteases are involved in the development and/or pathology of the nervous system. Natural protease inhibitors have the advantage to be reversible and with few side effects and thus are increasingly considered as new drugs. Kunitz-type protease inhibitors (KTPIs), reported in the venom of various organisms, such as wasps, spiders, scorpions, and snakes, have been studied for their potent anticoagulant activity and widespread protease inhibitor activity. Putative KTPI anticoagulants have been identified in transcriptomic resources obtained for two blister beetle species, Lydus trimaculatus and Mylabris variabilis. The KTPIs of L. trimaculatus and M. variabilis were characterized by combined transcriptomic and bioinformatics methodologies. The full-length mRNA sequences were divided on the base of the sequence of the active sites of the putative proteins. In silico protein structure analyses of each group of translational products show the biochemical features of the active sites and the potential protease targets. Validation of these genes is the first step for considering these molecules as new drugs for use in medicine.


Asunto(s)
COVID-19 , Escarabajos , Animales , Escarabajos/genética , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Serina Proteasas
12.
Med Res Rev ; 42(6): 2126-2167, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1905913

RESUMEN

The rising pandemic caused by a coronavirus, resulted in a scientific quest to discover some effective treatments against its etiologic agent, the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). This research represented a significant scientific landmark and resulted in many medical advances. However, efforts to understand the viral mechanism of action and how the human body machinery is subverted during the infection are still ongoing. Herein, we contributed to this field with this compilation of the roles of both viral and human enzymes in the context of SARS-CoV-2 infection. In this sense, this overview reports that proteases are vital for the infection to take place: from SARS-CoV-2 perspective, the main protease (Mpro ) and papain-like protease (PLpro ) are highlighted; from the human body, angiotensin-converting enzyme-2, transmembrane serine protease-2, and cathepsins (CatB/L) are pointed out. In addition, the influence of the virus on other enzymes is reported as the JAK/STAT pathway and the levels of lipase, enzymes from the cholesterol metabolism pathway, amylase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and glyceraldehyde 3-phosphate dehydrogenase are also be disturbed in SARS-CoV-2 infection. Finally, this paper discusses the importance of detailed enzymatic studies for future treatments against SARS-CoV-2, and how some issues related to the syndrome treatment can create opportunities in the biotechnological market of enzymes and the development of new drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Alanina Transaminasa/farmacología , Amilasas/farmacología , Angiotensinas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Aspartato Aminotransferasas/farmacología , Catepsinas/farmacología , Colesterol , Cuerpo Humano , Humanos , Quinasas Janus/farmacología , Lactato Deshidrogenasas , Lipasa/farmacología , Papaína/farmacología , SARS-CoV-2 , Factores de Transcripción STAT/farmacología , Serina Proteasas/farmacología , Transducción de Señal
13.
Microbiol Spectr ; 10(2): e0216721, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1784773

RESUMEN

The SARS-CoV-2 coronavirus, which causes COVID-19, uses a viral surface spike protein for host cell entry and the human cell-surface transmembrane serine protease, TMPRSS2, to process the spike protein. Camostat mesylate, an orally available and clinically used serine protease inhibitor, inhibits TMPRSS2, supporting clinical trials to investigate its use in COVID-19. A one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model for camostat and the active metabolite FOY-251 was developed, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. The model predicts that 95% inhibition of TMPRSS2 is required for 50% inhibition of viral entry efficiency. For camostat 200 mg dosed four times daily, 90% inhibition of TMPRSS2 is predicted to occur but with only about 40% viral entry inhibition. For 3-fold higher camostat dosing, marginal improvement of viral entry rate inhibition, up to 54%, is predicted. Because respiratory tract viral load may be associated with negative outcome, even modestly reducing viral entry and respiratory tract viral load may reduce disease progression. This modeling also supports medicinal chemistry approaches to enhancing PK/PD and potency of the camostat molecule. IMPORTANCE Strategies to repurpose already-approved drugs for the treatment of COVID-19 has been attractive since the beginning of the pandemic. Camostat mesylate, a serine protease inhibitor approved in Japan for the treatment of acute exacerbations of chronic pancreatitis, inhibits TMPRSS1, a host cell surface serine protease essential for SARS-CoV-2 viral entry. In vitro experiments provided data suggesting that camostat might be effective in the treatment of COVID-19. Multiple clinical trials were planned to test the hypothesis that camostat would be beneficial for treating COVID-19 (for example, clinicaltrials.gov, NCT04353284). The present work used a one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) mathematical model for camostat and the active metabolite FOY-251, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. This work is valuable to guide further development of camostat mesylate and possible medicinal chemistry derivatives for the treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Estudios Clínicos como Asunto , Ésteres , Guanidinas , Humanos , Serina Proteasas , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Glicoproteína de la Espiga del Coronavirus
14.
Curr Pharm Biotechnol ; 23(15): 1837-1850, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1775534

RESUMEN

It has been very recently suggested that individuals with chronic gut inflammation are highly susceptible to COVID-19. They constitute the serious cases of COVID-19, in which inflammatory cytokine storm is observed. On the contrary, the healthy gut microbiota is linked with low chronic gut and systemic inflammation. This raises the idea that maintenance of the healthy gut microbiota and prevention of gut microbial dysbiosis in COVID-19 patients might avoid the increased cytokine storm, which in turn might reduce the mortality rate. It has been shown that the modulation of the gut microbiota is an effective strategy to strengthen immunity and might be a possible treatment for individuals with viral infections. Currently, there is no clinical data considering the impact of the modulation of the gut microbiota on the treatment of COVID-19. We hypothesize that targeting the gut microbiota might be a novel therapeutic approach or at least a supportive therapy. In the present review article, we described the interaction between SARS-CoV-2 and gut microbiota dysbiosis through two possible mechanisms, including aberrant immune activation and aberrant mammalian target of rapamycin (mTOR) activation. Further, the disruption of the gastrointestinal reninangiotensin system (GI RAS), dysregulation of the coagulation and fibrinolytic systems, and the activity of human serine proteases in COVID-19 pathogenesis were addressed. We also provided possible strategies to restore all the discussed aspects via gut microbiota modulation.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Humanos , Disbiosis , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Inflamación , Serina-Treonina Quinasas TOR , Serina Proteasas
15.
Libyan J Med ; 17(1): 2054111, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1752028

RESUMEN

Vitamins (Vit) C and D are widely used as immunogenic supplements among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. The SAR-CoV-2 virus enters into the pulmonary endothelial cells through attachment to angiotensin converting enzyme 2 receptor (Ace2) and the proteolytic activity of Cathepsin L (Ctsl) and transmembrane serine protease 2 (Tmprss2) enzymes. This study aimed to determine the influence of Vit C and D on the mRNA expression of Ace2, Tmprss2, and Ctsl genes in the mouse lungs. Vitamins C and D were administrated to different groups of mice through intra-peritoneal route in doses equivalent to human for 30 days. Then, the mRNA expression of SARS-CoV-2 entry gene was analyzed using qRT-PCR. It is found that Vit D, but not C, upregulated significantly (P < 0.05) the mRNA expression of Ace2 by more than six folds, while downregulated the expression of Ctsl and Tmprss2 genes by 2.8 and 2.2 folds, respectively. It can be concluded from this study that Vit D alters the mRNA expression of Ace2, Tmprss, and Ctsl genes in the mouse lungs. This finding can help us in understanding, at least in part, the molecular influence of Vit D on genes involved in the entry of SARS-CoV-2 into the cells.


Asunto(s)
COVID-19 , Serina Proteasas , Enzima Convertidora de Angiotensina 2 , Animales , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Catepsina L/genética , Catepsina L/metabolismo , Células Endoteliales , Humanos , Pulmón/metabolismo , Ratones , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/metabolismo , SARS-CoV-2 , Serina Proteasas/metabolismo , Vitaminas
16.
Molecules ; 27(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1742557

RESUMEN

The S protein of SARS-CoV-2 is a crucial structural and functional component for virus entry. Due to the constant mutation of the virus, there are very limited ways to prevent and control COVID-19. This experiment used a macroscopic SDS-PAGE method and proved that the S protein of wild-type SARS-CoV-2 virus, especially the S1 subunit, is very sensitive to alkaline serine protease with acidic pI (ASPNJ), NJ represents Neanthes japonica (Izuka) from which ASP is purified). ASPNJ cleaves proteins when the carbonyl group of the peptide bond is contributed by arginine or lysine. ASPNJ can degrade the S protein very quickly and effectively in vitro with relative selectivity. It can be inferred that the S, S1 and RBD of SARS-CoV-2 variants can also be easily degraded by ASPNJ. This rapid and strong degradation of the S protein by ASPNJ may become a potential new treatment strategy.


Asunto(s)
COVID-19 , Serina Proteasas , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2 , Serina Proteasas/genética , Proteínas del Envoltorio Viral/metabolismo
17.
Curr Med Chem ; 29(4): 635-665, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1742086

RESUMEN

Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since there is currently no causative drug against this viral infection available, science is striving for new drugs and other approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARSCoV- 2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Serina Proteasas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
18.
Hum Genet ; 141(11): 1705-1722, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1669806

RESUMEN

Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host-pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.


Asunto(s)
COVID-19 , Serina Proteasas , Animales , Humanos , Hierro , Mamíferos , Proteínas de la Membrana/genética , SARS-CoV-2/genética , Serina Proteasas/genética , Tripsina
19.
Orphanet J Rare Dis ; 17(1): 19, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1635660

RESUMEN

BACKGROUND: Cerliponase alfa, an enzyme replacement therapy for neuronal ceroid lipofuscinosis type 2 (CLN2), is currently available in England through a managed access agreement (MAA). It is administered every 2 weeks via an intracerebroventricular device. Here we report qualitative research with families of children with CLN2 disease and healthcare professionals (HCPs) who run the MAA, to understand how access to cerliponase alfa via the MAA at Great Ormond Street Hospital (GOSH) in London, and the overall management of CLN2 disease, was affected during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Telephone interviews were conducted with nine families, representing 11 children with CLN2 disease, and two HCPs in November and December 2020. RESULTS: Children had received cerliponase alfa treatment for a mean (SD) of 23.1 ± 24.7 months (7.1 ± 4.6 months in the MAA). Families travelled 7-398 km for treatment (mean 210 ± 111 km). Treatment with cerliponase alfa was designated "essential" by GOSH and continued as normal during the pandemic but with extra safety precautions, and no children missed any treatments. Families were highly motivated to continue treatment, despite considerable anxiety about the risk of coronavirus infection from travelling and staying overnight but were reassured by communications from GOSH and the safety precautions put in place. Support therapy services were widely compromised, causing families concern about deterioration in their children's condition. Families were confused about COVID-19 testing and shielding, and were unclear whether children with CLN2 disease were vulnerable to COVID-19. CONCLUSIONS: Looking forward, advice for children with CLN2 disease should be specific and tailored, taking into account the family unit. Support therapies should be considered essential alongside cerliponase alfa treatment.


Asunto(s)
COVID-19 , Lipofuscinosis Ceroideas Neuronales , Aminopeptidasas , Prueba de COVID-19 , Niño , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Humanos , Pandemias , Proteínas Recombinantes , SARS-CoV-2 , Serina Proteasas , Tripeptidil Peptidasa 1
20.
Biomed Res Int ; 2022: 1558860, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1622112

RESUMEN

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Asunto(s)
Alcoholes Grasos/farmacología , Sistema de Administración de Fármacos con Nanopartículas/farmacología , SARS-CoV-2/efectos de los fármacos , Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/química , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA